.. _installation: ************ Installation ************ Prerequisites ============= The SkyLLH framework has several dependencies. They are listed in `requirements.txt `_ file: :: astropy numpy scipy iminuit matplotlib They can be installed from `skyllh` directory with: .. code:: bash pip install -r requirements.txt On cobalt and NPX servers we can use CVMFS Python 3 virtual environment with all necessary packages already installed. In order to activate it run: .. code:: bash eval `/cvmfs/icecube.opensciencegrid.org/py3-v4.1.1/setup.sh` Setup ===== Using pip --------- The latest `skyllh` release can be installed from the `PyPI `_ repository: .. code:: bash pip install skyllh The current development version can be installed using pip: .. code:: bash pip install git+https://github.com/icecube/skyllh.git#egg=skyllh Optionally, the editable package version with a specified reference can be installed by: .. code:: bash pip install -e git+https://github.com/icecube/skyllh.git@[ref]#egg=skyllh where * `-e` is the editable flag * `[ref]` is an optional argument containing a specific commit hash, branch name or tag Cloning from GitHub ------------------- The framework is split into two packages: 1. `github.com/icecube/skyllh `_ * Contains open source code with classes defining the detector independent likelihood framework. 2. `github.com/icecube/i3skyllh `_ * Contains collections of pre-defined SkyLLH IceCube analyses and pre-defined IceCube datasets. In order to set it up, we have to clone git repositories and add them to the `PYTHONPATH`: .. code:: bash git clone git@github.com:icecube/skyllh.git /path/to/skyllh git clone git@github.com:icecube/i3skyllh.git /path/to/i3skyllh export PYTHONPATH=$PYTHONPATH:/path/to/skyllh export PYTHONPATH=$PYTHONPATH:/path/to/i3skyllh Alternatively, we can add them inside the python script: .. code:: python import sys # Add the skyllh and i3skyllh packages to the PYTHONPATH. sys.path.insert(0, '/path/to/skyllh') sys.path.insert(0, '/path/to/i3skyllh')