{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# IC170922A_wGFU\n", "\n", ".. contents:: :local:" ] }, { "cell_type": "markdown", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "## Introduction\n", "\n", "The IC170922A_wGFU analysis is a multi-dataset time-integrated single source\n", "analysis with a two-component likelihood function using a spacial and an energy\n", "event PDF." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup\n", "\n", "Import analysis creation function from \"i3skyllh\" project." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from i3skyllh.analyses.IC170922A_wGFU.analysis import create_analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add the required imports for the analysis." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import logging\n", "import numpy as np\n", "\n", "# Classes to define the source hypothesis.\n", "from skyllh.physics.source import PointLikeSource\n", "\n", "# Classes for utility functionality.\n", "from skyllh.core.config import CFG\n", "from skyllh.core.random import RandomStateService\n", "from skyllh.core.timing import TimeLord\n", "\n", "# Logging setup utilities.\n", "from skyllh.core.debugging import (\n", " setup_logger,\n", " setup_console_handler,\n", " setup_file_handler\n", ")\n", "\n", "# The pre-defined data samples.\n", "from i3skyllh.datasets import data_samples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define TXS 0506+056 location to use as a point source." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def TXS_location():\n", " src_ra = np.radians(77.358)\n", " src_dec = np.radians(5.693)\n", " return (src_ra, src_dec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Setup logging first to get log messages from \"skyllh\" project." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "setup_logger('skyllh', logging.DEBUG)\n", "log_format = '%(asctime)s %(processName)s %(name)s %(levelname)s: '\\\n", " '%(message)s'\n", "setup_console_handler('skyllh', logging.INFO, log_format)\n", "#setup_file_handler('skyllh', logging.DEBUG, log_format, 'debug.log')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set a number of CPUs available for parallel calculations." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "CFG['multiproc']['ncpu'] = 16" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define which datasets seasons to use." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "sample_seasons = [\n", " (\"PointSourceTracks\", \"IC40\"),\n", " (\"PointSourceTracks\", \"IC59\"),\n", " (\"PointSourceTracks\", \"IC79\"),\n", " (\"PointSourceTracks\", \"IC86, 2011\"),\n", " (\"PointSourceTracks\", \"IC86, 2012\"),\n", " (\"PointSourceTracks\", \"IC86, 2013\"),\n", " (\"PointSourceTracks\", \"IC86, 2014\"),\n", " (\"PointSourceTracks\", \"IC86, 2015\"),\n", " (\"PointSourceTracks\", \"IC86, 2016\"),\n", " (\"PointSourceTracks\", \"IC86, 2017\"),\n", " (\"GFU\", \"IC86, 2015-2018\")\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the datasets." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "datasets = []\n", "for (sample, season) in sample_seasons:\n", " # Get the dataset from the correct dataset collection.\n", " dsc = data_samples[sample].create_dataset_collection()\n", " datasets.append(dsc.get_dataset(season))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set a rss seed and define a random state service." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "rss_seed = 1\n", "rss = RandomStateService(rss_seed)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define the source." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "source = PointLikeSource(*TXS_location())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a TimeLord instance. It is used to keep track of execution times of specific code segments." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "tl = TimeLord()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create analysis." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[==========================================================] 100% ELT 0h:03m:57s\n", "[==========================================================] 100% ELT 0h:01m:34s\n" ] } ], "source": [ "with tl.task_timer('Creating analysis.'):\n", " ana = create_analysis(\n", " datasets, source,\n", " data_base_path=None,\n", " compress_data=False,\n", " tl=tl)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Unblind the data and print best fit parameters." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TS = 25.1273\n", "ns_fit = 15.8888\n", "gamma_fit = 1.98958\n" ] } ], "source": [ "with tl.task_timer('Unblinding data.'):\n", " (TS, fitparam_dict, status) = ana.unblind(rss)\n", "print('TS = %g'%(TS))\n", "print('ns_fit = %g'%(fitparam_dict['ns']))\n", "print('gamma_fit = %g'%(fitparam_dict['gamma']))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generate some signal events." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('n_sig: %d', 98)\n", "signal datasets: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n" ] } ], "source": [ "with tl.task_timer('Generating signal events.'):\n", " (n_sig, signal_events_dict) = ana.sig_generator.generate_signal_events(rss, 100)\n", "print('n_sig: %d', n_sig)\n", "print('signal datasets: '+str(signal_events_dict.keys()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the TimeLord instance to get a summary of execution times." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Executed tasks:\n", "[ Loading grl data from disk.] 0.622766 sec\n", "[ Loading exp data from disk.] 2.55504 sec\n", "[ Loading mc data from disk.] 64.3951 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.0118048 sec\n", "[ Preparing data of dataset \"IC40\" by \"data_prep\".] 0.0924909 sec\n", "[ Appending IceCube-specific data fields to exp data.] 0.0445914 sec\n", "[ Appending IceCube-specific data fields to MC data.] 4.54178 sec\n", "[ Cleaning exp data.] 0.0034306 sec\n", "[ Cleaning MC data.] 0.179492 sec\n", "[ Asserting data format.] 0.000287294 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.013073 sec\n", "[ Preparing data of dataset \"IC59\" by \"data_prep\".] 0.22692 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.00786304 sec\n", "[ Preparing data of dataset \"IC79\" by \"data_prep\".] 0.216612 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.0117018 sec\n", "[ Preparing data of dataset \"IC86, 2011\" by \"data_prep\".] 0.0715699 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.01633 sec\n", "[ Preparing data of dataset \"IC86, 2012\" by \"data_prep\".] 1.39812 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.0136781 sec\n", "[ Preparing data of dataset \"IC86, 2013\" by \"data_prep\".] 2.32966 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.0154629 sec\n", "[ Preparing data of dataset \"IC86, 2014\" by \"data_prep\".] 1.78734 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.0154121 sec\n", "[ Preparing data of dataset \"IC86, 2015\" by \"data_prep\".] 1.34278 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.0102689 sec\n", "[ Preparing data of dataset \"IC86, 2016\" by \"data_prep\".] 1.51473 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.015995 sec\n", "[ Preparing data of dataset \"IC86, 2017\" by \"data_prep\".] 1.33161 sec\n", "[Selected only the experimental data that matches the GRL for dat] 0.114225 sec\n", "[ Preparing data of dataset \"IC86, 2015-2018\" by \"data_prep\".] 1.10847 sec\n", "[ Creating analysis.] 335.913 sec\n", "[ Unblinding data.] 0.361189 sec\n", "[ Generating signal events.] 0.0934389 sec\n" ] } ], "source": [ "print(tl)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 4 }